
1

 __

Central Asian Business Journal

 Volume 23, No. 2, pp. 1-12

 https://doi.org/XXXXXXXXXXXX

 __

A simple enumerative polynomial-time algorithm for the prime

factorization

Vassilly Voinov1

Abstract: A simple enumerative polynomial-time algorithm for the prime factorization of

composite numbers 𝑛 ∈ ℕ+ is introduced. The worst case complexity of the algorithm is 𝑂(√𝑛).
This implies that the RSA algorithm used in cryptography is not secure. Results of the research

can also be considered as a strong argument in favor of equality P=NP.

Keywords: Prime factorization, RSA encryption, algorithm’s complexity, P=NP

AMS Subject Classifications: 11A51, 11Y05, 11Y16, 68Q15, 68Q17, 94A60

1. Introduction

 The prime factorization problem is formulated as follows: given a composite number 𝑛 ∈ ℕ+

find two different primes a and b such that 𝑛 = 𝑎 ∙ 𝑏. Fibonacci, Fermat, Euler, and many other

famous mathematicians tried to find the effective method for solving this problem. In 1974 Pollard

[5] suggested the well-known p-1 special-purpose searching algorithm with the running time

𝑂(𝐵log𝐵log𝑛log𝑛), where B is a smoothness bound B. Unfortunately, as Jacqueline Speiser [9]

noted, this algorithm is “effective at factoring numbers with a small prime-factor and only

potentially retrieves a non-trivial factor”. In 1971 Dixon [2] introduced a general-purpose

factorization searching algorithm with the runtime of exp(√2log𝑛loglog𝑛). In 2008 Pomerance

[6] using the quadratic sieve improved the runtime of Dixon’s algorithm to exp(√log𝑛loglog𝑛).

Stephen Cook [1], p.6 noted that this problem “is a good example of a problem in NP that seems

unlikely to be either in P or NP-complete”. Stephen Cook also wrote that the computational

complexity, i.e. inability to solve the problem in polynomial time on Turing machines “plays an

important role in modern cryptography. The security of the Internet, including most financial

1 Independent scholar, Kazakhstan. Email: voinovv@mail.ru

https://doi.org/
mailto:voinovv@mail.ru

2

transactions, depends on complexity-theoretic assumptions such as the difficulty of integer

factoring or breaking the Data Encryption Standard. If P=NP, these assumptions are all false.

Specifically an algorithm solving 3-SAT in 𝑛2 steps could be used to factor 200-digit numbers in

a few minutes”.

 The best known so far algorithm of Müeller [4] solves 3-SAT problem in 𝑛15 steps, and, hence,

does not help to solve the prime factorization problem. It is worth to mention also the following

remark of Stephen Cook [1], p.4 “Shor [8] has shown that some quantum computer algorithm is

able to factor integers in polynomial time, but no polynomial-time integer-factoring algorithm is

known for Turing machines”.

 The paper is organized as follows. Section 2 considers and analyses the simple enumerative

polynomial-time algorithm for the prime factorization. A brief discussion and conclusions are

given in Section 3. The Appendix provides the R-script that can be used by an interested reader

for reproducing the numerical results of this research or solving their own instances.

2. Main result and a computer experiment

 Consider a product of two unknown primes 𝑛 = 𝑎 ∙ 𝑏. If, without loss of generality, 𝑎 < 𝑏, then

𝑎 < √𝑎𝑏. From this it follows that a belongs to the finite sorted set of primes {2,3,5, … , 𝑐}, where

c is the largest prime less than √𝑛. Since a divides n by condition, the following simple algorithm

for determining a and respectively 𝑏 = 𝑛/𝑎 can be used:

Step 1. Open an existing file of primes or generate all 𝜋(√𝑛) primes less than √𝑛. π(x) denotes

the number of primes less than or equal to 𝑥 ∈ ℝ+.

Step 2. Verify that c divides n evenly.

Step 3. If “yes” then 𝑎 = 𝑐 and 𝑏 = 𝑛/𝑐. Otherwise, replace c by the first smaller than c prime

and go to Step 2. Repeat while c is more than 2.

 The main operation in the Step 2 is the division of n by c. In the worst case the number of

divisions equals to the number 𝜋(√𝑛) of primes that can be approximated by √𝑛/(𝑙𝑛√𝑛 − 1) [3].

Since
√𝑛

𝑙𝑛√𝑛−1
< √𝑛, the worst case complexity of the algorithm is approximately 𝑂(√𝑛).

 To check the correctness of the above algorithm consider the following computer experiment

based on the R-script provided in Appendix:

Exp. 1. Let the upper bound N for the maximal prime generated belong to the interval

[100000000, 200000000,…,1500000000]. 15 artificial instances with 𝑎 = 2 and the largest

prime b less than N were created. The script that did not use the parallelization was run for all 15

values of 𝑛 = 2𝑏. Results of calculations on a standard PC (Intel® Core ™ i7-2600 CPU@3.40

GHz, RAM 24.00 GB) are presented in Table 1 and Figure 1 below.

mailto:CPU@3.40

3

Table 1. Mean computing time Mt in seconds as a function of 𝑝 = 𝜋(√𝑛), where 𝑛 = 2𝑏 and b

is the largest prime less than the upper bound N for the maximal prime generated.

N b n=2b p = π(√𝒏) Mt

100000000 99999989 199999978 1663 0.0004600

200000000 199999991 399999982 2262 0.0006200

300000000 299999977 599999954 2717 0.0007400

400000000 399999959 799999918 3080 0.0008353

500000000 499999993 999999986 3401 0.0009376

600000000 599999971 1199999942 3699 0.0010190

700000000 699999953 1399999906 3961 0.0010812

800000000 799999999 1599999998 4203 0.0011490

900000000 899999963 1799999926 4435 0.0012150

1000000000 999999937 1999999874 4648 0.0012640

1100000000 1099999997 2199999994 4846 0.0013227

1200000000 1199999993 2399999986 5033 0.0013680

1300000000 1299999983 2599999966 5221 0.0014232

1400000000 1399999987 2799999974 5399 0.0014670

1500000000 1499999957 2999999914 5571 0.0015304

Fig. 1. The experimental dependence of Mt on 𝑝 = 𝜋(√𝑛) fitted by the Microsoft Excel 2018.

 From this figure one sees that the linear function 𝑦 = 2.598 ∙ 10−8𝑝 + 0.0001043 (solid line

with the multiple 𝑅2 = 0.9994 and the adjusted one of 0.9993) provides an excellent fit for the

CPU time dependence on 𝑝 = 𝜋(√𝑛). Two other criteria (the Residual Standard Error

(RSE=8.424 ∙ 10−6 on 13 degrees of freedom) and the Akaike’s Information Criterion (AIC = -

304.11)) confirm this conclusion. The script, using only values of n, produced the correct values

of b implemented for creation the instances (see the second column of Table 1).

y = 2.598E-08p + 0.0001043
R² = 0.9994

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0.0018

10000 20000 30000 40000 50000

Ti
m

e
, s

e
c.

Mt, sec.

4

An interested reader may check that for n of 18 decimal digits 120156838817804240 the script

gives the correct values of a = 240313681 and b = 499999993 for ~1.3 sec. It also confirms the

numerical result of Jacqueline Speiser [9] for n = 773978585664881 obtained by Dixon’s

algorithm for ~20 sec. on a PC with 8 cores. Our algorithm takes 0.175 sec.

 Two important conclusions follow from the above: a) the considered algorithm for the prime

factorization is correct, and b) the algorithm is polynomial-time with the worst case complexity of

𝑂(√𝑛).

3. A discussion and conclusions

 The proposed polynomial-time algorithm for the prime factorization permits using even not very

powerful PC to factor numbers of up to 18 decimal digits. There are much room to improve it. It

is worth, e.g., to consider the following note of Speiser [9]: “to scale to larger integers would

require either a cluster of many machines working in parallel or an architecture with a larger word

size (128- or 256- bits)”. Naturally that such an improvement will be done soon, and the numbers

of 200 digits recommended in [7], p. 12 can be factored. Summarizing one may conclude that the

main result of this research is that the RSA algorithm is not secure and can be hacked.

 The second important conclusion is that the suggested algorithm is a polynomial-time one and

that the prime factorization problem on the contrary of the opinion of Stephen Cook [1] is in P.

This is a serious argument in favor of equality P=NP that has been experimentally proven in

[10].

References

1. Cook, S. (2000) The P versus NP problem. https://www.claymath.org/pvsnpPDF.

2.Dixon, J.D. (1981) Asymptotically fast factorization of integers. Math. of computation 36(153),

pp. 255-260.

3. How many primes are there? https:// primes.utm.edu/howmany.html, accessed on March 16,

2023.

4. Müeller, M. (2020) Polynomial Exact-3-SAT-Solving Algorithm. Int. J. of Engineering

Technologies 9(3), pp. 1-55, DOI: 10.14419/ijet.v9i3.30749.

5. Pollard, J.M. (1974) Theorems on factorization and primality testing. Mathematical

Proceedings of the Cambridge

 Philosophical Society 76(3), Cambridge University Press, pp. 521-528.

6. Pomerance, C. (2008) Smooth numbers and the quadratic sieve. Algorithmic Number Theory

MSRI Publications 44,

 pp. 69-81.

https://www.claymath.org/pvsnpPDF

5

7. Rivest, R.L, Shamir, A, and Adleman, L. (1978) A method for obtaining digital signatures and

public-key cryptosystems. Communications of the ACM 26, pp. 120-126.

8. Shor, P. (1997) Polynomial-time algorithms for prime factorization and discrete logarithms on

a quantum computer. SIAM J. on Computing 26, pp. 1484-1509.

9. Speiser, J. Implementing and comparing integer factorization algorithms.

 https://crypto.stanford.edu/cs359c/17sp/projects/Jacqueline Speiser.pdf, accessed on March 3,

2023.

10. Voinov, V. (2023) An experimental supported by some strong theoretical arguments proof of

the fundamental equality P=NP. To appear in the Central Asia Business Journal.

Appendix.

To run the script you have to:

1. Download and install R. (E.g., version 4.2.2).

2. Install or invoke the R-packages: "primes" and "microbenchmark).

3. Copy the script and put it into the R-editor.

4. Set the desired value of n.

5. Save and run the script.

library(primes)

library(microbenchmark)

options(digits=22)

g<-generate_primes(max=500000000)

g1<-as.data.frame(g); g1<-g1[[1]]

Pr_decomp_1<-function(g33){

for(i in 1:(g33-1)){

g34<-g321[g33-i]

g35<-g3/g34

g36<-g35-floor(g35)

if(g36==0){

y10<-g34

z10<-floor(g35)

message("a=",y10)

message("b=",z10)

break

};};}

dp<-773978585664881 ## insert your n here! Values of n less than

18 decimal digits are recommended!

#dp<-120156838817804240

g3<-dp

message("n=",g3)

g31<-floor(g3^(0.5))

g321<-subset(g1,g<g31)

6

g33<-length(g321)

Ut<-microbenchmark(Pr_decomp_1(g33),times=1L)

Ut1<-Ut$time

Ut2<-Ut1/1000000000

message("Computing time, sec.=",Ut2)

In the output you will see n, a, b, and computing time.

